

MEMO: How to calculate the limit of blank (LOB)?

a) **Definition:** the limit of blank *LOB* with a confidence level $(1 - \alpha)$ is defined (in number of partitions in a well) as the maximum number of positive partitions expected in a well with a probability of 1- α in a sample containing no target sequence.

In other words, this is the maximum number of false positives that are plausible with a $1 - \alpha$ probability (typically 95% for $\alpha = 5\%$).

b) A calculation method:

1) Make *R* sample replicates without any target sequence (take $R \ge 30$ wells).

It is recommended to perform these replicates under the same experimental conditions as the test experiments, in particular with a quantity of nucleic acids which is representative of that of the tests (if this is not constant, then take the most unfavorable case with a large quantity of nucleic acids, for example between 1000 and 10000 copies / μ l).

- 2) Count the number x(i) of "false positive" partitions observed in the well of each replicate *i*
- 3) Calculate the mean μ and the standard deviation σ of the x(i)
- 4) Calculate the corrected mean: $\mu_{corr} = \mu + 1.645 \sigma / \sqrt{R}$
- 5) The LOB with 95% confidence level is determined as follows (calculation based on Normal Law approximation and Chernoff's inequality):

μ_{corr}	<i>LOB</i> (95%) in number of positive partitions in well
$0 < \mu_{corr} \le 0.180$	2
$0.180 < \mu_{corr} \le 0.477$	3
$0.477 < \mu_{corr} \le 0.863$	4
$0.863 < \mu_{corr} \le 1.314$	5
$1.314 < \mu_{corr} \le 1.813$	6
$1.813 < \mu_{corr} \le 2.348$	7
$2.348 < \mu_{corr} \le 2.913$	8
$2.913 < \mu_{corr} \le 3.503$	9
$3.503 < \mu_{corr} \le 4.115$	10

Special case: if $\mu = 0$ (i.e. false positives are never present) then LOB(95%) = 0